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A B S T R A C T

Objective: From a dataset of clinical assessments and gait analysis, this study was designed to determine

which of the assessments or their combinations would most influence a low gait index (i.e., severe gait

deviations) for individuals with cerebral palsy.

Design: A retrospective search, including clinical and gait assessments, was conducted from August 2005

to September 2009.

Population: One hundred and fifty-five individuals with a clinical diagnosis of cerebral palsy (CP) (mean

age (SD): 11 (5.3) years) were selected for the study.

Method: Quinlan’s Interactive Dichotomizer 3 algorithm for decision-tree induction, adapted to fuzzy

data coding, was employed to predict a Gait Deviation Index (GDI) from a dataset of clinical assessments

(i.e., range of motion, muscle strength, and level of spasticity).

Results: Seven rules that could explain severe gait deviation (a fuzzy GDI low class) were induced.

Overall, the fuzzy decision-tree method was highly accurate and permitted us to correctly classify GDI

classes 9 out of 10 times using our clinical assessments.

Conclusion: There is an important relationship between clinical parameters and gait analysis. We have

identified the main clinical parameters and combinations of these parameters that lead to severe gait

deviations. The strength of the hip extensor, the level of spasticity and the strength of the tibialis

posterior were the most important clinical parameters for predicting a severe gait deviation.

� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Cerebral palsy (CP) is a disorder caused by childhood brain
damage that usually occurs before the age of 2 years. CP represents
a group of permanent but not static disorders of locomotion,
posture, and sensory and motor functions due to nonprogressive
interference, lesions or abnormalities in brain development [1].

Currently, the complex locomotor characteristics of individuals
with CP are assessed through clinical and gait assessments. The
Abbreviations: AB, able-bodied individuals; CP, cerebral palsy; FDT, fuzzy decision

tree; GDI, Gait Deviation Index; GMFCS, Gross Motor Function Classification

System; RMSE, root mean square error; ROM, passive range of motion; 3DGA, three-

dimensional gait analysis.
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main clinical assessments evaluate the functionality of neuromus-
cular and musculoskeletal structures separately. These assess-
ments are often divided into three test categories: (1) passive range
of motion (ROM) [2], (2) muscle strength [3], and (3) level of
spasticity [3]. The gait assessment is realised using a computer-
aided three-dimensional gait analysis (3DGA). This method allows
the quantification of a variety of measurements that provide a
comprehensive description of human gait (e.g., 3D joint angles,
moments, and powers). The 3DGA is used in clinical settings to
assist in the development of therapeutic strategies to treat the
motor deficits associated with CP [4]. However, interpreting CP gait
analyses and related clinical analyses has traditionally been
challenging when considering the large dataset available for the
assessments and their interdependence.

To support the interpretation of gait analyses, understand-
ing what roles the clinical parameters play in the gait
deviations is important. Correlations and multiple regression
analysis based on empirical datasets were the main methods
asurements linked to the Gait Deviation Index in cerebral palsy
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Table 1
The main clinical parameters chosen by the experts and their window boundaries

for fuzzy coding, based on expert advice and the clinical measurements’ data

distribution. The green areas represent normal values; the yellow areas, abnormal

values; and the red areas, very abnormal values.

Premise of 

the rules 

Cl inical assessment  Lo w Aver High

Thomas test
a

0 10 25 

ROM abduction
a

10 30 55 

ROM internal rotation
a

30 55 80 

Strength extensors
b

1 3 5 

Spasticity adductors
c

0 2 4 

ROM extension
a −15 0 15 

Strength extensors
b

1 3 5 

Spasticity flexors
c

0 2 4 

Duncan-Ely Test
c

0 2 4 

ROM flexion knee at 90° a −10 10 30 

ROM flexion knee at 0° a −15 0 20 

Strength triceps
b

1 3 5 

Strength tibialis anterior
b

b

1 3 5 

Strength tibialis posterior 1 3 5 

Spasticity triceps
c

0 2 4 

Spasticity soleus
c

0 2 4 

Spasticity tibialis posterior
c

0 2 4 

43 77.5 108 

Abbreviations – Aver: average; ROM: range of motion.
a ROM in degrees.
b Muscle strength according to a manual five-point scale.
c Level of spasticity measured by a modified Ashworth Scale (range from 0 to 4).
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employed toachieve this aim [5–7]. However, these methods
showed poor correlations between gait analyses and clinical
assessments [5–7]. Alternatively, numerous supervised learn-
ing methods (e.g., artificial neural networks, random forest,
and support vector machines) have been developed to extract
knowledge from large datasets and could be further adapted to
identify clinical parameters that are the most indicative of
alterations in gait. Among these methods, the fuzzy decision
tree (FDT) approach seems particularly appropriate for
identifying and explaining gait deviations [8]. FDT combines
fuzzy logic with decision tree. The fuzzy logic makes it possible
to simplify the knowledge extraction process, address data
imprecision, and increase the interpretability. The decision tree
makes it possible to induce automatic and intelligible readable
rules from a dataset. This is the main advantage of FDT
compared with other supervised learning methods that are
currently based on a black box system (i.e., a system that can
be viewed only in terms of its input and outputs) [8,9].

Although FDT has rarely been used in gait analysis, we believe
that it could be used to gain relevant insights into the complexity
of CP gait. Therefore, the aim of this article is to determine which
of the clinical parameters or their combinations in a dataset of
clinical assessments would most influence a low gait index of
individuals with CP. Our hypothesis is that some of the clinical
parameters or their combinations are more important than
others for explaining the severity of gait deviations. The
identified clinical parameters might be considered key factors
for gait analysis interpretation and could be used to optimise
treatment strategies in individuals with CP.

2. Methods

A retrospective search in the laboratory database, including clinical and gait

assessments, was conducted for the period from August 2005 to September 2009.

This study was approved by the local ethics committee.

2.1. Population

For selecting the individuals, the following inclusion criteria were used: (1)

individuals had to have a clinical diagnosis of CP; (2) individuals could be male or

female; (3) the individual’s age had to be in the range of 3–30 years on the exam

date; and (4) individuals had to have completed a clinical exam and a gait analysis

on the same date. Individuals who underwent a lower limb surgery 6 months prior

to the clinical exam and gait analysis were excluded.

2.2. Materials

2.2.1. Clinical assessments

The clinical assessments consisted of 17 functional tests of the lower limb

(Table 1). They were chosen by a multidisciplinary team. These tests were

divided into three main categories: (1) ROM, measured with a handheld

goniometer and using gentle slow manoeuvres to avoid spastic muscle

responses; (2) muscle strength, according to a manual five-point scale [3];

and (3) the level of spasticity measured with a modified Ashworth Scale, ranging

from 0 to 4 [3]. These clinical assessments were performed by three well-trained

physical therapists.

2.2.2. Gait analysis

The 3DGAs were performed using a 7-camera motion measurement system

(Vicon MX3+, Oxford Metrics, UK). Reflective markers for video measurements were

placed at defined anatomical points on the pelvis and lower limbs according to the

Davis protocol [10]. Kinematic variables were calculated using Nexus software

(Oxford Metrics, UK) and Matlab (MathWork, USA). All individuals were asked to

walk barefoot at a self-selected speed along a 12-m walkway. Data were collected

for at least five trials for each participant. The same biomechanical engineer

performed these 3DGAs.

Among the multivariate measurements of overall gait pathology based on

kinematic data [11–13], we chose to use the Gait Deviation Index (GDI) developed

by Schwartz and Rozumalski [12]. The GDI is computed with kinematic gait data

from the pelvis, hip, knee, ankle, and foot. A GDI around 100 indicates an individual

whose gait is as close as possible to typical able-bodied (AB) individuals. Every 10

points below 100 corresponds to one standard deviation away from the mean for AB

individuals.
Please cite this article in press as: Sagawa Jr Y, et al. Are clinical me
patients? Gait Posture (2012), http://dx.doi.org/10.1016/j.gaitpost.2
2.3. Analyses

2.3.1. Fuzzy window coding and the definition of linguistic modalities

Fuzzy window coding simplifies the knowledge extraction process and

increases interpretability. This method transforms data into a ‘‘natural language’’

while minimising the loss of information due to the transformation of quantitative

data in qualitative data [8]. Contrary to a classical-binary approach in which just 1

value is possible for representing the modality for such a variable (e.g., Low,

Average, High—1, 0, 0), the fuzzy approach permits different membership values

(e.g., Low, Average, High—0.7, 0.3, 0) as a probability of belonging to a modality

and then addresses data imprecision by defining fuzzy numbers that can be

expressed in linguistic variables [14].

Thus, in this study, the clinical assessments and the GDI for each limb were

coded using three triangular fuzzy membership functions related to the following

three modalities—Low, Average, and High (Fig. 1)—as used by Armand et al. [8].

The membership values were determined based on expert advice and the data

distribution of the clinical assessments and the GDI. The Low and High boundaries

of these assessments correspond to the 5th and 95th percentiles, respectively, and

the Average boundary corresponds to the median. Table 1 shows the main clinical

assessments chosen by the experts, the GDI chosen and their window boundaries

for the fuzzy coding. For example, for the Thomas test, the scores were distributed

around 108 (median – Average), 08 (5th percentile – Low) and 258 (95th percentile

– High). For the muscle strength and level of spasticity tests, we used the same

scale for all the joints. In our study, the fuzzy coding transformed the variables

without changing their meaning. For example, in clinical settings, we look for low

values of strength and high values of spasticity. The results need to be interpreted

in the same manner, but using just three modalities. To facilitate analysis, we

added a colour code in Tables 1 and 2 to indicate the modalities related to normal

and abnormal values.
asurements linked to the Gait Deviation Index in cerebral palsy
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For a variable V

1

0

Low Average High

5th per Med 95th per

Mem bership

μLow 
v (x)

μAverag e
v (x)

μHigh  
v (x)

Fig. 1. The principle of fuzzy windowing with triangular membership functions is

used to characterise clinical and GDI measurements as Low, Average, and High. The

membership values of the clinical and GDI measurements were determined based

on expert advice and the data distributions of each parameter (Low and High

boundaries correspond to the 5th and 95th percentiles, respectively, and the

Average boundary corresponds to the median). x is a measured value of a given

clinical variable V; mV
AverageðxÞ and mV

LowðxÞ are, respectively, the membership values

of the Average and Low modalities. In this example, the membership value of the

High modality is equal to zero (mV
HighðxÞ ¼ 0).

Fig. 2. The GDI distribution of 240 spastic sides and the fuzzy windows determining

the three GDI classes: Low (black), Average (dark grey), and High (light grey).

Y. Sagawa Jr. et al. / Gait & Posture xxx (2012) xxx–xxx 3

G Model

GAIPOS-3781; No. of Pages 5
2.3.2. A learning set of observations

The learning set of observations corresponds to the set of variables for the lower

limbs of our individuals. An observation is characterised by several inputs and one

output, which consist of the fuzzy membership values related to the linguistic

modalities. In our case, the inputs are represented by the set of linguistic variables

from the clinical assessments (Table 1). The output, also called the conclusion of the

rule, is represented by the set of linguistic variables from the GDI (Table 1 and

Fig. 2).

2.3.3. Rule induction using fuzzy decision trees (FDT)

The process of generating rules from data is called induction. Quinlan’s

Interactive Dichotomizer 3 algorithm for decision-tree induction was first

described in 1986 [9]. Several methods for adapting this algorithm to fuzzy data

have been proposed [15,16]. The method was explained in detail by Marsala [17]

and applied to biomechanical data by Armand et al. [8].

In the FDT method, the experts express system knowledge as fuzzy rules. Fuzzy

rules take the following form: ‘‘If input A and input B are true, then conclusion C can

be made’’. Both the inputs and the conclusion are described in linguistic terms

(Section 2.3.1), which simplifies the knowledge extraction process and increases

the interpretability of rules because the fuzzy rule is expressed in terms similar to

the expert’s natural language [14].

The learning set is then subjected to a 4-step procedure:

(1) A discriminating measure is used to determine which clinical variable best

explains the distribution of the individuals among the classes, and a node is

created. In our study, a discrimination measure based on information entropy

was used [17].
Table 2
The rules induced from the FDT that produced a GDI Low. The green areas represent no

values.

R If and and and 
Hip Knee

1
Str H ip  ext 
Average

Spa Hip a dd 
High

ROM  Knee 
ext Hi gh

ROM  Ankle  flex 
knee  at  0° Av erage

Str A
p

2
Str H ip  ext 
Average

ROM Hip  int 
rot Av erage

ROM  Knee 
ext Av erage

3
Str H ip  ext 
Average

Duncan -Ely 
Test Lo w

ROM  Ankle  flex 
knee  at  0° Hi gh

Str A
p

4
Str H ip  ext 
Average

ROM Hip 
abd Lo w

ROM  Ankle  flex 
knee  at  0° Hi gh

Str A
pos 

5
Str H ip  ext 
Average

Duncan -Ely 
Test  Average

ROM  Ankle  flex 
knee  at  0° Av erage Str A

pos 

6
Str H ip  ext 
Average

ROM Hip  int 
rot Av erage

ROM  Knee 
ext Av erage

Str A
p

7
Str H ip  ext 
Average

ROM Hip  int 
rot Av erage

Spa Knee flex 
High

Abbreviations – R: rules; ROM: range of motion; Str: strength; Spa: spasticity; Ext: extensi

rot: internal rotation.

Please cite this article in press as: Sagawa Jr Y, et al. Are clinical me
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(2) The dataset is partitioned to build as many subsets as there are linguistic

modalities for the variable chosen in step 1.

(3) A termination condition is tested using a termination criterion, b. In our study,

the termination condition is defined for a given node level, with the condition

probability p of being in a class, thus verifying the conjunction of fuzzy

conditions from the ‘‘root’’ to the node. In our study, b was initially set at b = 0.7

[17].

(4) If the termination condition is verified, then the subset is considered to be a

‘‘leaf’’ of the tree. If the termination condition is not verified, then steps 1–3 are

repeated.

Once the FDT has been created, each branch of the tree (i.e., the path from the

root to the leaf of a FDT) can be converted into a rule. The rule ends at the leaf level,

indicating the membership in the class for which the tree was induced. Following

the four steps of the rule induction procedure, the other two steps can be executed

to simplify and optimise the knowledge base. These steps were performed

according to Yuan and Shaw’s method [15].

2.3.4. Individual classification

The fuzzy rules are a sort of knowledge repository, in which each rule containing

a probable explanation for the GDI classes. Thus, this rule base can be used

objectively and automatically to assign selected individuals to the fuzzy GDI classes

to which they most likely belong—which is precisely what we hoped to achieve. To

test the accuracy of this rule-based classification system, a stratified 10-fold cross-

validation [18] was performed. In this paper, we present the rules that explain the

fuzzy GDI low class because they are the most interesting for a clinical point of view:

discover the clinical parameters or their combination that lead to severe gait
rmal values; the yellow areas, abnormal values; and the red areas, very abnormal

and and and and Then

Ankle

nkle  tibiali s 
ost Hi gh

Spa Ankle  tibialis 
post  Average

G
D

I –
Low

Str Ankle 
tric eps  Lo w

Spa Ankle  tibial is 
post Hi gh

nkle  tibiali s 
ost Hi gh

Spa Ankle 
tric eps  Hi gh

Spa Ankle  tibialis 
post  Average

nkl e tibiali s 
t Average

Spa Ankle  tibialis 
post  Average

nkle  tibiali s 
t Average

Str Ankle 
tric eps  Lo w

Str Ankle 
tibialis a nt 
Average

Spa Ankle  tibialis 
post  Average

nkle  tibiali s 
ost Lo w

Spa Ankle 
tric eps  Hi gh

Spa Ankle  tibialis 
pos  Hi gh

Spa Ankle  tibialis 
post  Average

on; Flex: flexion; Add: adduction; Abd: abduction; Ant: anterior; Post: posterior; Int

asurements linked to the Gait Deviation Index in cerebral palsy
12.11.026

http://dx.doi.org/10.1016/j.gaitpost.2012.11.026


Y. Sagawa Jr. et al. / Gait & Posture xxx (2012) xxx–xxx4

G Model

GAIPOS-3781; No. of Pages 5
alterations. These rules explain severe gait deviations based on GDI values between

43 and 77.5 (Fig. 2).

3. Results

3.1. Population

According to our criteria, 155 individuals (45% with hemiplegia
and 55% with diplegia) were selected to perform the study. The
individuals had a mean age (SD) of 11 (5.3) years, a mean mass (SD)
of 34.5 (14.7) kg, a mean height (SD) of 1.37 (0.2) m, and mean (SD)
Gross Motor Function Classification System (GMFCS) level of 1.5
(0.6). These 155 individuals corresponded to 240 ‘‘spastic side’’
observations.

3.2. FDT rule inductions

Seven rules were induced to explain the fuzzy GDI low class. For
the entire FDT system, using our stratified 10-fold cross-validation,
we computed the mean (SD) of the following parameters:
coverage, root mean square error (RMSE), maximum error, and
accuracy. The accuracy represents the ratio between the correctly
classified values and all values of our rules. All of the observations
tested, caused at least 1 of our rules to fire, thus ensuring a
coverage of 100%. The RMSE—which measures the differences
between the net GDI values predicted by our inductions and the
GDI values observed—was 2.35 (0.4) GDI. The absolute maximum
error observed was 26.3 (5.12) GDI, and the accuracy was 0.9
(0.01).

3.3. Rule characterisation

The 7 rules that characterise a fuzzy GDI low class are shown in
Table 2. These rules are composed of 4–7 premises and are
classified according to their firing strengths. Except for rule 4, all
rules are composed of premises from the hip, knee, and ankle
joints. All rules have premises based on our three clinical
assessment categories, and except for rules 1 and 7, all rules have
premises based on our three fuzzy linguistic modalities.

To induce the rules for a fuzzy GDI low class, 13 out of 17 clinical
assessments were used. As shown in Table 2, the strength of hip
extension, the ROM of hip internal rotation, and the strength of the
tibialis anterior all had globally average values. The level of
spasticity of the tibialis posterior, the ROM of the ankle in flexion,
the level of spasticity of the triceps surae, the ROM of the knee in
extension, the level of spasticity of the hip adductors, the level of
spasticity of the knee flexors, and the strength of the tibialis
posterior all had globally average to high values. The strength of the
triceps surae, the level of spasticity of the knee extensors (using the
Duncan Ely test), and the ROM of the hip in abduction all had
globally average to low values.

4. Discussion

4.1. The accuracy and originality of our FDT method

Some studies in the literature found significant but poor
correlations when clinical and gait assessments were correlated in
pairs. Orendurff et al. [5] and McMulkin et al. [6] used ROM
parameters, while Desloovere et al. [7] used 32 clinical assess-
ments involving ROM, muscle strength, level of spasticity, and
selectivity. After examining the correlations, all of these authors
concluded that clinical assessments did not seem to be good
predictors of gait deviation. Still, Desloovere et al. [7] found better
results for muscle strength, the level of spasticity, and selectivity
than for ROM.
Please cite this article in press as: Sagawa Jr Y, et al. Are clinical me
patients? Gait Posture (2012), http://dx.doi.org/10.1016/j.gaitpost.2
In contrast, the classification accuracy of our method (87–93%)
is in the same range as the studies using artificial neural networks
combined with clinical biomechanics. The accuracy of the gait
data classifications with neural networks varies from study to
study but can be estimated at approximately 80% [19]. In Chau’s
review [20], the accuracy of gait parameter prediction using other
data types yielded a correlation coefficient that varied between
0.71 and 0.98. The accuracy of our classification indicates that the
chosen clinical assessments provide a good explanation of the
individuals’ gait deviation. Many of our low fuzzy rules (severe
gait deviations) are composed of premises from three joints, three
clinical assessment categories, and three linguistic modalities.
The multiple origins and complexity of CP gait could explain why
this rule diversity works.

Because the clinical assessments performed by clinical experts
have a modest repeatability [21], fuzzy logic appears to be an ideal
tool for dealing with the impreciseness and variability of clinical
assessments [14].

4.2. Interpreting the rules

Many of the parameters used in our low fuzzy rules have
already been used to characterise CP [3]. Considering the number
of occurrences of clinical parameters in the rules, the strength of
the hip extensor, the level of spasticity and the strength of the
tibialis posterior were the most important parameters for
predicting a severe gait deviation. In the following paragraphs,
the clinical parameters involved in 7 fuzzy GDI low rules are
discussed.

Unsurprisingly, at the hip level, the strength of the hip extensor
is the main clinical parameter that makes it possible to predict a
low GDI. This is in line with the results of Eek and Beckung [22],
which highlight a significant loss of strength in the hip extensors,
according to GMFCS. These hip extensors are involved in
generating the power needed to walk. Riad et al. [23] and Lee
et al. [24] suggest that muscle strengthening physiotherapy should
be directed towards the power generators in the hip because hip
extensors compensate for the lack of power at the ankle.

In the frontal plane of the hip, limited abduction and spasticity
in the adductor are the parameters involved in the rules predicting
a low GDI. The results of limited abduction and spasticity in the
adductor can disrupt stability during stance and limb advance-
ment during swing [25]. Internal hip rotation (found in 3 rules) and
excessive femoral anteversion are common alterations with CP
[26] and can lead to severe misalignment, including external tibia
torsion and a valgus position of the foot [25].

At the level of the knee, recurvatum (‘‘ROM Knee ext high’’),
spasticity of the knee flexor or spasticity of the knee extensor can
lead to a low GDI in our rules. Recurvatum could be linked with an
insufficient quadriceps strength to preserve weight-bearing
stability [25]. Surprisingly, the strength of the knee extensors is
not involved in our rules. Eek and Beckung [22] have identified
this muscle as a key muscle group in the gait of individuals with
CP. Further investigations are needed to determine the associa-
tions between quadriceps strength and recurvatum in this CP
group. With respect to the spasticity of the knee, the spasticity of
the extensor and the spasticity of the knee flexor were found
separately in one rule (R5, R7 respectively). The spasticity of the
knee extensor could contribute to a stiff knee gait [27], whereas
the spasticity of the knee flexor could contribute to a crouch gait
[27].

At the level of the ankle, the high level of spasticity of the triceps
is present in 2 rules. This spasticity leads to ankle equines, which is
one of the most common gait abnormalities in individuals with CP
[28]. The lack of strength of the triceps is present in 2 rules. The
weakness of the triceps is associated with a lack of propulsion at
asurements linked to the Gait Deviation Index in cerebral palsy
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the end of the stance phase [25]. Moreover, the gastrocnemius
controls the tibia advancement and could be associated with a
crouch gait [25]. The spasticity of the tibialis posterior is always
present in rules predicting low GDI. The spasticity of this muscle is
associated with equinovarus of the foot [27,29].

4.3. Limitations

This study has some limitations. Despite the fact that the
medical staff examined various clinical aspects and the capacity of
each individual to undergo a 3DGA, 8% of our individuals received a
Botulinum Toxin injection at 3.5 months from the clinical exams
and 3DGA. Graham et al. recommended a more conservative delay
of approximately 6 months to guarantee that individuals recover
their initial gait performance [30]. In addition, 10% of our patients
were under 6 years old when the 3DGA was conducted: two were 3
years old; five were 4 years old; and nine were 5 years old. To
insure gait reproducibility, 3DGA should be performed in children
older than 6 years old.

We emphasised the advantages of using FDT methods, and then
we presented only the results for the GDI low class. We identified
the clinical parameters that permitted us to predict a severe gait
deviation. If individuals with CP exhibit these parameters within
their modalities, they might have a severe gait deviation. A future
study with a large sample should be conducted to identify
parameters that explain the longitudinal modification of the GDI
classes after an intervention (e.g., passing from a fuzzy GDI low

class to a fuzzy GDI average/high class or the inverse).

5. Conclusions

We have identified the main clinical parameters and combina-
tions of these parameters that lead to severe gait deviations in
individuals with CP. The strength of the hip extensor, the level of
spasticity and the strength of the tibialis posterior were the most
important clinical parameters for predicting a severe gait
deviation. These clinical parameters have to be considered as
key factors for gait analysis interpretation and for optimising
treatment strategies in CP individuals with severe gait alterations.
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